Supplementary information # Culture-independent method for identification of microbial enzyme-encoding genes by activity-based single-cell sequencing using a water-in-oil microdroplet platform Kazuki Nakamura¹, Ryo Iizuka^{1*}, Shinro Nishi², Takao Yoshida², Yuji Hatada², Yoshihiro Takaki², Ayaka Iguchi³, Dong Hyun Yoon³, Tetsushi Sekiguchi⁴, Shuichi Shoji³ and Takashi Funatsu^{1*} ¹Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; ²Japan Agency for Marine-Earth Science and Technology, 2-15 Natsushima-cho, Yokosuka-shi, Kanagawa 237-0061, Japan; ³Department of Nanoscience and Nanoengineering (ASE Graduate School), Waseda University, 3-4-1 Okubo, Shinju-ku, Tokyo 169-8555, Japan; ⁴Research Organization for Nano & Life Innovation, Waseda University, 513, Waseda-tsurumaki-cho, Shinjuku-ku, Tokyo, 162-0041, Japan *Address correspondence to: Ryo Iizuka, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan, TEL: +81-3-5841-4761, FAX: +81-3-5802-3339, E-mail: iizuka@mol.f.u-tokyo.ac.jp; Takashi Funatsu, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan, TEL: +81-3-5841-4760, FAX: +81-3-5802-3339, E-mail: funatsu@mol.f.u-tokyo.ac.jp #### **Supplementary Methods** #### Construction of expression plasmids for BGLs The coding sequences of deduced GH1 BGLs (BGL1B1, BGL1C1, BGL1E1 and BGL1E2) were amplified from MDA products using appropriate primer sets to introduce an *Nde* I restriction site at the 5'-end and a *BamH* I or *EcoR* I restriction site at the 3'-end (Supplementary Table S3). The amplified fragment was digested with *Nde* I and *BamH* I or *EcoR* I and was ligated to the same sites in the pET21c vector (Novagen). The expression plasmids for BGLs with a hexahistidine-tag at the C-terminus were obtained using the KOD – Plus– Mutagenesis Kit (Toyobo) using the expression plasmids for BGLs as a template. The oligonucleotides used for incorporating a hexahistidine-tag are listed in Supplementary Table S4. #### Expression and purification of BGLs E. coli BL21-CodonPlus (DE3) cells (Toyobo) carrying the expression plasmids were grown in Luria-Bertani medium containing 100 μg/mL ampicillin at 37°C until the OD₆₀₀ reached 0.5-0.6 and were then cultivated in the presence of 0.5 mM isopropylthio β-D-1-galactoside (IPTG) for 18 h at 15°C to express BGLs with a hexahistidine-tag in the soluble fraction. The harvested cells were suspended in buffer A [25 mM HEPES-NaOH (pH 7.5), 1 mM MgCl₂ and 500 mM NaCl] containing 1 mM benzamidine (Nacalai Tesque) and 200 μΜ 4-(2-aminoethyl) benzenesulfonyl fluoride hydrochloride (Nacalai Tesque) and were disrupted by sonication on ice. The supernatant after centrifugation (120,000 g, 60 min, 4°C) was applied to a HisTrap chelating HP column (GE Healthcare UK Ltd.) equilibrated with buffer A. Proteins were eluted using a linear gradient of 20-500 mM imidazole in the same buffer. The concentrated fractions were loaded on to a gel filtration column (HiLoad 26/60 Superdex 200 prep grade, GE Healthcare UK Ltd.) equilibrated with buffer B [20 mM HEPES-NaOH (pH 7.5), 150 mM NaCl and 1 mM DTT]. Purified BGLs were concentrated by ultrafiltration and stored in 20% (v/v) glycerol at -80°C before use. Their concentrations were determined from the absorbance at 280 nm with sequence-deduced molar extinction coefficients (calculated using Protein Calculator; http://protcalc.sourceforge.net/). #### Measurement of BGL activity The enzymatic activity of purified BGLs was measured using pNPG (Sigma-Aldrich) as a substrate at 30°C in 50 mM MES-NaOH (pH 6.5) and 50 mM NaCl. The enzymatic reactions were initiated by adding BGLs. The reactions were terminated by mixing with 0.2 M Na₂CO₃, and the absorbance at 400 nm was then measured using a spectrophotometer (V-670, JASCO). For blank experiments, the same procedures were performed without BGLs. The amount of released p-nitrophenol was calculated by subtracting the blank value and using a molar extinction coefficient of 17,100 $M^{-1} \cdot cm^{-1}$. Data were fitted to the Michaelis–Menten equation using the KaleidaGraph program (Synergy Software) to determine kinetic parameters. Experiments were performed in triplicate. #### Supplementary Fig. S1. Microfluidic device used in this study Micropillar (a) Photograph of the microfluidic device. (b) Design of the microfluidic device. 1, Oil inlet; 2, aqueous inlet; 3, flow-focusing junction; and 4, device outlet. The aqueous phase is continuously sheared off at a flow-focusing junction (3) by the oil stream to generate W/O microdroplets. At the device outlet (4), microdroplets can be collected using a micropipette. To prevent clogging of the junction, passive filters consisting of micropillars are incorporated upstream of the channels (1, 2). The width of the main channels was $100 \mu m$, and the width at the flow-focusing constrictions was $40 \mu m$. The height of all channels was $50 \mu m$. #### Supplementary Fig. S2. Percentage of FDGlu-positive cells in concentrated seawater Surface seawater was collected from the coast of Tokyo Bay, Japan (35° 19.170′ N, 139° 39.068′ E) in November 2015. The surface seawater was passed through a 41- μ m nylon net filter, a 20- μ m nylon net filter and a 10- μ m Omnipore membrane filter to separate large particles and debris. The aliquot (approximately 150 mL) was ultrafiltrated (5,000 g, 1–2 h, 4°C) using a 10-kDa pore membrane (Amicon Ultra-15). The seawater samples were mixed with DAPI (1.7 μ g/mL) and FDGlu (1.9 mM) in PCR tubes or W/O microdroplets (diameter: approximately 35 μ m). The stained cells were observed under a fluorescence microscope to calculate the percentage of FDGlu-positive cells versus the total number of cells stained by DAPI. Raw denotes raw seawater sample (approximately 1.3×10^6 cells/mL), 10-fold denotes 10-fold concentrated seawater (approximately 2.0×10^7 cells/mL) and 250-fold denotes 250-fold concentrated seawater (approximately 3.4×10^8 cells/mL). Results are shown as mean \pm standard deviation of three independent experiments. For each individual experiment, at least 240 cells were analysed. There was no statistically significant difference among them (p > 0.5, Student's t-test). Supplementary Fig. S3. Detection of enzymatic activities at the single-cell level in W/O microdroplets (a) Detection of esterase activity using 5(6)-carboxyfluorescein diacetate (Dojindo Laboratories). *E. coli* XL10-Gold were encapsulated into W/O microdroplets with the fluorogenic substrate. (b) Detection of phosphatase activity using fluorescein diphosphate (Marker Gene Technologies). *E. coli* XL10-Gold were encapsulated into W/O microdroplets with the fluorogenic substrate. (c) Detection of protease activity using Rhodamine 110, bis-(N-CBZ-L-arginine amide) (Biotium). *E. coli* XL10-Gold were encapsulated into W/O microdroplets with the fluorogenic substrate. (d) Detection of β-galactosidase activity using fluorescein di-β-D-galactopyranoside (Marker Gene Technologies). *E. coli* BL21(DE3) were encapsulated into W/O microdroplets with the fluorogenic substrate and IPTG. White arrowheads show fluorescent *E. coli* cells in W/O microdroplets. Scale bars represent 10 μm. Supplementary Table S1. Sequencing and assembly results of the SAGs | | SAG_A | SAG_B | SAG_C | SAG_D | SAG_E | SAG_F | |--------------------------|-------------|-------------|-------------|-------------|-------------|-------------| | Sequencing results | | | | | | | | Total reads | 1,137,441 | 638,895 | 766,115 | 719,809 | 623,599 | 782,795 | | Average read length (bp) | 287.2 | 306.3 | 288.2 | 290.7 | 332.2 | 301.2 | | Total read bases (bp) | 326,656,694 | 195,670,070 | 220,759,118 | 209,221,118 | 207,177,099 | 235,759,040 | | Assembly results | | | | | | | | Assembled contigs | 1,929 | 4,730 | 997 | 4,264 | 8,342 | 243 | | Contigs (>500 bp) | 527 | 969 | 528 | 1,417 | 2,058 | 234 | | N50 (bp)* | 6,862 | 6,647 | 19,912 | 4,174 | 2,175 | 45,833 | | Maximum length (bp) | 50,754 | 60,840 | 73,150 | 28,157 | 32,637 | 103,055 | | Total bases (bp) | 2,286,206 | 4,369,119 | 4,341,705 | 4,543,524 | 5,689,244 | 3,166,946 | | Average read depth | 156.4 | 29.9 | 24.0 | 32.8 | 26.0 | 29.4 | | GC content (%) | 47.3 | 50.5 | 36.2 | 36.2 | 35.3 | 32.8 | The section of total bases in the assembly results represents the number of bases that comprised the draft genome. *N50 represents the length of contigs that collectively cover at least 50% of the assembly. # Supplementary Table S2. Kinetic parameters for the enzymatic hydrolysis of pNPG | | K _m (mM) | k _{cat} (1/s) | $k_{\rm cat}/K_{\rm m}$ (1/M·s) | |--------|---------------------|------------------------|---------------------------------| | BGL1B1 | 2.23 ± 0.387 | 13.3 ± 1.65 | 5,950 ± 1,270 | | BGL1C1 | 1.61 ± 0.152 | 0.0145 ± 0.000435 | 9.05 ± 0.899 | | BGL1E1 | 1.04 ± 0.104 | 28.4 ± 1.97 | $26,800 \pm 3,220$ | | BGL1E2 | 1.24 ± 0.124 | 0.0217 ± 0.000939 | 17.5 ± 1.91 | Data show the mean and standard deviation from three independent experiments. ### **Supplementary Table S3. Primers for cloning GH1 BGL genes** | Prime | r set | Sequence (5'-3') | Enzyme | |---------|---------|--|--------| | Forward | | GGAATTC <u>CATATG</u> GAATCGTACTTGTTTCCCG | Nde I | | BGL1B1 | Reverse | G <u>GAATTC</u> TCAGCGCAGGGTGTTG | EcoR I | | DCI 1C1 | Forward | GGAATTC <u>CATATG</u> CTAAAAAAAGAATTCATCTATGGC | Nde I | | BGL1C1 | Reverse | $CG\underline{GGATCC}TTAGCGATTACTGATGAGCGTTTTATAC$ | BamH I | | BGL1E1 | Forward | GGAATTC <u>CATATG</u> AAAATAGAATTACCTAAAGAATCGAC | Nde I | | | Reverse | ${\tt G}\underline{{\tt GAATTC}}{\tt TTAAGGAGTTATTAGGCGTTGTTTAATAAAATC}$ | EcoR I | | BGL1E2 | Forward | GGAATTC <u>CATATG</u> AATACGTTTGCATTACCACTG | Nde I | | | Reverse | CG <u>GGATCC</u> TTAACGCAAAACCATACCCCTC | ВатН I | Restriction enzyme recognition sites are underlined. ## Supplementary Table S4. Primers for incorporating a hexahistidine-tag | Primer set | | Sequence (5'-3') | |------------|---------|---| | BGL1B1 | Forward | GCGCAGGGTGTTGCTGCGGG | | | Reverse | <u>CACCATCACCAT</u> TGAGAATTCGAGCTCCGTCGACAAGCT | | DCI 1C1 | Forward | GCGATTACTGATGAGCGTTTTATACGCATGACCAC | | BGL1C1 | Reverse | <u>CACCATCACCAT</u> TAAGGATCCGAATTCGAGCTCCGTCGACA | | DCI 1E1 | Forward | AGGAGTTATTAGGCGTTGTTTAATAAAATCACTATATAACAGTCCACTGTG | | BGL1E1 | Reverse | <u>CACCATCACCAT</u> TGAGAATTCGAGCTCCGTCGACAAGCT | | BGL1E2 | Forward | ACGCAAAACCATACCCCTCATGTCCTTTTTC | | | Reverse | <u>CACCATCACCAT</u> TAAGGATCCGAATTCGAGCTCCGTCGACA | The underlined sequences encode a hexahistidine-tag.